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The modi"ed di!erential quadrature method (MDQM) is proposed for vibration analysis
of elastically supported turbomachinery blades. A pre-twisted blade with varying
cross-section is modelled as a Timoshenko beam. The blade is supported by
two translational springs and three rotational springs at each end, and has a shroud
that is modelled as a mass at the tip of the blade. The equations of motion and the
boundary conditions for the coupled #exural and torsional vibration of the blade are
obtained by using Hamilton's principle. Numerical results of elastically supported
blades with or without a shroud are obtained by the MDQM and are validated by
comparing with analytical solutions. Campbell diagrams for a pre-twisted blade with an
airfoil cross-section are constructed. The accuracy and e$ciency of the present approach
have been demonstrated.
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1. INTRODUCTION

Turbomachinery is widely used in industry, such as: turboengines, turbogenerators, etc.
Failure of turbine blades often occurs as a result of sustained blade vibration at or near their
natural frequencies; therefore, knowledge of these frequencies is of fundamental importance.
In the past several decades, both analytical methods and experimental techniques have been
developed to analyze the vibrational behavior of a rotating blade. Reviews of the various
aspects of the blade research can be found in references [1}5]. Carnegie [6, 7] derived the
governing equations of motion of a pre-twisted blade of variable cross-section, with the
e!ect of shear deformation and rotary inertia taken into account. Since a closed-form
solution for the blade vibration problem is not obtainable, numerical analysis is employed.
Fu [8] transformed the Carnegie formulation into a set of recurrence formula and obtained
natural frequencies of blades with various end conditions. Maurizi et al. [9] considered
a uniform Timoshenko beam with ends elastically restrained against rotation and
translation and compared the results with that of the Bernoulli}Euler beam. Rossi and
Laura [10] studied the transverse vibration of a non-uniform thickness beam having
a "xed-end and carrying a concentrated mass at the other. Qatu and Leissa [11] studied
vibrations of a laminated composite twisted cantilever plate. Lim and Liew [12]
investigated the vibratory characteristics of pre-twisted composite symmetric laminates
with trapezoidal platform based on the Ritz method. Lim [13] studied the vibrational
behavior of turbomachinery blades with non-linear twisting curvatures and arbitrary angles
of twist which are described by a natural twisting co-ordinate system.
0022-460X/01/100937#17 $35.00/0 ( 2001 Academic Press
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The di!erential quadrature method (DQM) is a computationally e$cient method for
solving linear and non-linear partial di!erential equations. This approach was "rst
proposed by Bellman and Casti [14]. Bert et al. [15}17] applied this method to structural
problems involving the fourth order partial di!erential equations. Sherbourne and Pandey
[18] analyzed buckling of beams and composite plates by using the DQM. Gutierrez and
Laura [19] using the DQM studied the vibrational behavior of the Timoshenko beams. Shu
and Richards [20] solved the two-dimensional incompressible Navier}Stokes equation by
using a generalized di!erential quadrature method. Bert and Malik [21] reviewed the recent
development of the DQM in computational mechanics. Malik and Bert [22] developed
three-dimensional elasticity solutions for free vibrations of rectangular plates by DQM.
Choi et al. [23] studied the dynamic behavior of an elastically supported spinning
Timoshenko beam.

However, there is a major drawback for DQM when dealing with governing equations of
fourth or higher orders for which two or more boundary conditions are speci"ed at each
boundary point. Numerical error is induced by using the direct deletion or d-point method
in the original DQM since boundary conditions are not exactly satis"ed at the boundary
points, especially for natural boundary conditions. Choi and Chou [24] proposed the
modi"ed di!erential quadrature method (MDQM) for analyzing various structural
elements. This new approach overcomes some drawbacks of the original DQM and
provides more accurate solution.

In this paper, the vibrational characteristics of a turbomachinery blade with general end
restraints are studied by using the MDQM. The blade is modelled as a Timoshenko beam.
The non-dimensional frequencies of a uniform beam with or without a tip mass are
obtained and compared with the exact values. E!ects of taper ratio and support sti!nesses
on the vibrational behavior of a pre-twisted blade are investigated. Campbell diagrams of
a pre-twisted asymmetric blade are constructed.

2. EQUATIONS OF MOTION

Figure 1 shows the con"guration of an elastically supported blade having a cross-section
as an airfoil and a shroud at the tip. The blade which is attached to a rotating hub is
supported by two translational springs and three rotational springs at each end. The shroud
is modelled as a mass at the tip of the blade and is assumed to have mass m

s
, mass moments

of inertia I
dx

and I
dy

and polar moment of inertia Ih . The Timoshenko beam theory is
adopted and two lateral displacement "elds, u and v, and three angular displacement "elds,
Figure 1. A blade with a shroud and elastic supports.
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/
x
, /

y
and h on any section of the blade are considered. It is noted that by using a beam

model for a blade, the slenderness ratio is limited to a certain value, say, 0)2; otherwise,
a plate or shell model should be used.

Figure 2 shows the cross-section of the blade and co-ordinate systems used. X}> are the
principal axes through the centroid of the blade cross-section. x}y are the co-ordinate axes
through the centroid and they rotate a twisting angle a with respect to the X}> co-ordinate.
x
1
}y

1
are the co-ordinate axes through the center of #exure and are parallel to the x}y axes.

m}f are "xed to the rotating disk and m-axis is the spin axis. Both x}y and x
1
}y

1
axes are on

the cross-section at distance z from the root.
In the present study, the e!ects of the Coriolis force and the warping of cross-section, as

well as the e!ect of the torsion constant are neglected. Expressions for the kinetic energy
and total potential energy of the blade are given in Carnegie [7] and Fu [8]. By using the
Hamilton principle and considering free vibration with frequency u, the equations of
motion of the blade are derived as
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Figure 2. Co-ordinate systems for a turbomachinery blade.
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The forcing terms in the above equations are
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The boundary conditions are written as
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3. MODIFIED DIFFERENTIAL QUADRATURE METHOD

The basic concept of the DQM is that the derivative of a function, with respect to a space
variable at a given sampling point, is approximated as a weighted linear sum of the
functional values at all the sampling points in the domain of that variable. By applying the
di!erential quadrature (DQ) formulation, the partial di!erential equation is then reduced to
a set of algebraic equations for time-independent problems and a set of ordinary di!erential
equations in time for initial/boundary value problems. As for any polynomial approach, the
accuracy of the solution by this method increases as the order of the polynomial increases.

For the MDQM, the same procedure of deriving weighting matrices is used as for the
original DQM. For a function u (x), the DQ formulation for the "rst derivative at the ith
sampling point is given by

d

dx
u (x

i
):

N
+
j/1

=
ij
u(x

j
) , i"1, 2,2,N, (12)

in which N is the number of sampling points, x
i
the location of the ith sampling point in the

domain, u(x
i
) the functional value at this point, and =

ij
the weighting coe$cients of the

"rst-order di!erentiation.
In order to determine the weighting coe$cients=

ij
, a series of the test functions are taken

to be Lagrangian interpolation polynomials [20] as

u (x)"
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)
, i"1, 2,2,N, (13)
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where
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), i"1, 2,2,N.

Other types of polynomials could be used as well. However, use of the Lagrangian
interpolation polynomial would overcome the numerical ill-condition in calculating the
weighting matrix. Introducing equation (13) into equation (12), one derives that
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and
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=
ij
, i, j"1, 2,2,N. (14b)

For obtaining good accuracy of the analyzed results, it is important to choose
appropriate sampling points in the domain. Following Bert and Malik [21], the sampling
points are selected as

x
i
"

¸

2
(1!cos[(i!1)n/(N!1)]), i"1, 2,2,N, (15)

where ¸ is the length of a beam. Once the sampling points are selected, the weighting matrix
can be obtained from equation (14). It is emphasized that the order of the test functions
must be greater than the order of highest derivative in the governing equations.

The main di!erence between the MDQM proposed here and the original DQM is how
the boundary conditions are dealt with. In the original DQM, derivatives in the governing
equations are directly replaced by weighting matrices and boundary conditions are "nally
incorporated in the algebraic equations at the boundary points. In the MDQM, governing
di!erential equations, which are written in the "rst order form, are transformed into
algebraic ones by using DQ formulation, and modi"ed relationships are developed for
dealing with the boundary conditions so as to overcome the numerical error induced
by using the d-method in the original DQM. A new formulation process is proposed
to incorporate the modi"ed relationships and the transformed equations are then combined
to obtain the "nal form of MDQM equations.

3.1. MODIFIED RELATIONSHIP

In MDQM, the functional values of unknown variables are divided into two parts, terms
of internal "eld which are governed by equations of motion, and terms of the given external
"eld which are speci"ed by boundary conditions. As an example, two discretized "elds
u
i
and h

i
, i"1, 2,2,N, are considered for an one-dimensional problem with the boundary

conditions h
1
"a

1
and h

N
"a

N
, and h is the "rst derivative of u. The relationship by the

DQ transformation between h
i
and u

i
can be written as

Mh
i
N " [=
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j
N. (16)

Considering the boundary conditions h
1
"a

1
and h

N
"a

N
, one obtains the following

modi"ed relationship:

Mh*
i
N " [B (h)

ij
] Mh

j
N#MC(h)

i
N, (17)



942 S.-T. CHOI AND Y.-T. CHOU
where
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N contains the internal "eld values of h and the values at the boundary. [B(h)

ij
] denotes

the modi"ed matrix corresponding to the given boundary conditions in h. [B(h)
ij

] is obtained
from an identity matrix by setting to zeros the elements corresponding to the locations of
the speci"ed boundary conditions of h. MC (h)

i
N contains the terms of boundary conditions of

h. If the values of u
i
are desired in the previous problem, the DQ formulation of equation

(16) can be introduced into the internal "eld of equation (17) as
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In the case of homogeneous boundary conditions, MC(h)
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N"M0N, and the matrix
manipulation of equation (18) becomes
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This form is the same as that of Bert et al. [17].

3.2. NEW FORMULATION PROCESS

In order to use the modi"ed relationships presented in this paper, the governing
di!erential equations of the blade are written in the "rst order form, as shown in equations
(1)}(5). By applying the DQ formulation and introducing the modi"ed relationships, the
equations of motion and boundary conditions can be transformed from the di!erential form
to the algebraic form. For example, the boundary conditions of F

x
and M

x
in equations (11)

can be expressed, respectively, as
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The governing equations of the blade, equations (1)} (5), and the forcing terms, equations
(6)}(10), are to be expressed in the DQ form. By applying the DQ formulation, equation (1)
is transformed as,
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where [A
ii
] is a diagonal matrix with its ith element equal to the cross-sectional area of the

blade at the sampling point z
i
. Similarly, equation (6) is transformed into the discrete form

and combined with equation (19) as
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where [R
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] is a centrifugal force matrix which is expressed as
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(iG[=
ik
][B(Fx)

kl
][A

ll
][=

lm
]#oX2[=

ik
][B(Fx)

kl
][R

ll
][=

lm
]#oX2 sin2u[A

ij
]

#[=
ij
][St

jm
])Mu

m
N!oX2 sin u cosu[A

ij
]Mv

j
N!iG[=

ik
][B(Fx)

kl
][A

lj
]M/

xj
N

#oX2 ([=
ik
][B(Fx)

kj
][r@

yjj
][R

jj
]#[=

ik
][B(Fx)

kj
][R

ll
][=

lj
]#sin2 u[A

ij
][r

yjj
]

!sin u cos u[A
ij
][r

xjj
])Mh

j
N"ou2 ([A

ij
]#[=

ij
][m

jj
])Mu

j
N#ou2[A

ij
][r

yjj
]Mh

j
N.

(23)

Following the same procedure, the rest of the equations of motion and boundary conditions
are transformed to the discrete equations and rearranged as follows
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The elements of [K
ij
] and [M

ij
] are presented in Appendix A.

4. RESULTS AND DISCUSSION

The convergence and accuracy of the MDQM are investigated by considering a uniform
cantilever Timoshenko beam with a circular cross-section and a slenderness ratio r/¸"0)1.
Numerical results of the "rst four non-dimensional natural frequencies are obtained by the
present approach and listed in Table 1 for di!erent numbers of the sampling points, N"7,
9 and 11. Also shown in Table 1 are the corresponding exact values from Carr [25]. From
Table 1, it is observed that the "rst two natural frequencies converge to the corresponding
exact values for N"11, and the third and fourth natural frequencies show their
convergence trend. This shows the excellent agreement between the present results and the
exact values.
TABLE 1

Non-dimensional frequencies of a uniform cantilever ¹imoshenko beam by the MDQM and
exact solutions -"u(EI/oA)1@2/¸2

Exact values MDQM

Mode [25] N"7 N"9 N"11

1 3)324
3)324 3.324 3.324
(0%)- (0%) (0%)

2 16)289
16)274 16)289 16)289

(!0)09%) (0%) (0%)

3 36)708
37)079 36)677 36)708
(1)01%) (0)08%) (0%)

4 58)279
46)790 57)201 58)278

(!19)71%) (!1)85%) (0)00%)

-Percent error with respect to exact solution.



VIBRATION ANALYSIS OF TURBOMACHINERY BLADES 945
For a uniform cantilever beam with circular cross-section and a concentrated mass at the
free end, the "rst "ve non-dimensional natural frequencies obtained by the MDQM are
listed in Table 2 together with the analytical solutions by Rossi et al. [10]. Good agreement
is again observed from the comparison of these results. This shows the capability of the
present approach for dealing with a cantilever beam with a concentrated mass.

The vibration characteristics of a uniform beam with one end "xed and the other end
elastically supported and carrying a mass is studied. The slenderness ratio of the beam is
taken as r/¸"0)01 which is small enough such that it behaves like an Euler beam.
Non-dimensional fundamental frequencies are obtained by the present approach and are
listed in Table 3 for K

t2
¸3/EI"1)0 and di!erent values of m

s
/M

b
, I

dx
/M

b
¸2 and K

rx2
¸/EI.

Also listed in Table 3 are results of an Euler beam obtained by Grant [26] using the normal
TABLE 3

Non-dimensional fundamental frequency of a uniform beam (nine sampling points) K
tx2

¸3/EI
"1)0, r/¸"0)01

m
s
/M

b

K
rx2

¸

EI

I
dx

M
b
¸2

0 1)0 100

[26] MDQM [26] MDQM [26] MDQM

0 0)413616 0)413629 0)293137 0)293206 0)099586 0)101806
0)01 1)0 0)293655 0)293653 0)255272 0)254926 0)099543 0)103727

100 0)099670 0)108500 0)099425 0)099397 0)083880 0)086398

0 0)931611 0)931613 0)727319 0)727325 0)255535 0)255880
1)0 1)0 0)795710 0)759701 0)681996 0)681983 0)255272 0)255496

100 0)265809 0)266031 0)265433 0)265650 0)228251 0)229025

0 0)986917 0)986917 0)808349 0)808347 0)293212 0)293548
100 1)0 0)951724 0)951732 0)794229 0)794233 0)293107 0)293202

100 0)315401 0)315465 0)315197 0)315381 0)276156 0)276278

TABLE 2

Non-dimensional natural frequencies of a cantilever uniform beam with a concentrated mass at
the free end (13 sampling points)

Mode

r/¸

m
s

M
b

1 2 3 4 5

[10] MDQM [10] MDQM [10] MDQM [10] MDQM [10] MDQM

0)01 0)4 2)16 2)1680 17)17 17)1761 52)06 52)0618 106)45 106)4606 180)53 180)3267
1)0 1)55 1)5574 16)25 16)2499 50)89 50)8944 105)19 105)2003 179)22 179)0412

0)08 0)4 2)14 2)1459 15)92 15)8991 43)74 43)6067 79)81 79)4498 120)69 119)9942
1)0 1)54 1)5435 15)10 15)0806 42)82 42)5883 78)94 78)5874 119)89 119)2002

0)16 0)4 2)08 2)0840 13)39 13)3347 32)42 32)2145 53)88 53)4596 76)47 75)8153
1)0 1)50 1)5043 12)76 12)7092 31)76 31)5523 53)32 52)9088 75)79 75)3174
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mode approach and the Newton}Raphson root "nding method. Good agreement is again
observed between these two sets of results.

Parametric studies are performed for a Timoshenko beam with a circular cross-section.
E!ects of the slenderness, taper and mass ratios, and moment of inertia on the fundamental
frequency of the beam are investigated.

(1) Slenderness ratio (r/¸): A uniform Timoshenko beam without an end mass is
considered. The non-dimensional fundamental frequency of the beam with di!erent
slenderness ratios r/¸"0)01, 0)1, 0)2 is obtained by using the MDQM and is shown in Figure 3.
It is observed that the fundamental frequency decreases as the slenderness ratio increases
since the e!ect of shear deformation becomes more profound for a higher slenderness ratio.

(2) ¹aper ratio (r
2
/r

1
): A linearly tapered beam with circular cross-section and slenderness

ratio r
1
/¸"0)1 is considered. The non-dimensional fundamental frequency of the beam

with di!erent taper ratios r
2
/r

1
"0)5, 1)0, 1)5 is obtained by using the MDQM and is shown

in Figure 4. It is observed that with r
1
/¸ held "xed, a beam with a higher taper ratio may

have a higher or lower fundamental frequency than that of a beam with a smaller taper
ratio. The support sti!nesses also play a role in this aspect.
Figure 3. Non-dimensional fundamental frequency of a uniform Timoshenko beam versus the spring constant
for various slenderness ratios: (a) K

rx1
¸3/EI"K

rx2
¸3/EI"0; (b) K

tx1
¸/EI"K

tx2
¸/EI"106; (c) K

rx1
¸3/EI"

K
tx1

¸/EI"106.



Figure 4. Non-dimensional natural frequency of a Timoshenko beam versus spring constants for various taper
ratios (r

1
/¸"0)1): (a) K

rx1
¸3/EI"K

rx2
¸3/EI"0; (b) K

tx1
¸/EI"K

tx2
¸/EI"106; (c) K

rx1
¸3/EI"K

tx1
¸/

EI"106.
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(3) Mass ratio (m
s
/M

b
): A uniform beam with a concentrated end mass m

s
, and I

dx
"

I
dy
"Ih"0, is studied. The results of non-dimensional fundamental frequency are shown in

Figure 5. A higher mass ratio usually results in a lower fundamental frequency. However,
the mass ratio does not a!ect the frequency if the sti!ness of the translational spring at the
end of the beam, where the mass is attached, is very high such that there is no lateral
displacement at that end of the beam.

(4) E+ect of moment of inertia (I
dx

/M
b
¸2): For a uniform beam having an end mass with

mass ratio m
s
/M

b
"1)0 and various moment-of-inertia ratios I

dx
/M

b
¸2"0)1, 1)0, 10, the

fundamental frequency is obtained and shown in Figure 6. It is observed that, in general,
a higher moment-of-inertia ratio results in a lower fundamental frequency.

The MDQM is applied to determine the natural frequencies of a straight cantilever blade
with an airfoil cross-section. The properties of the blade are [27]

I
XX

"34)96e-12 m4, I
YY
"2)7928e-9 m4, ¸"0)1524 m, E"213)9e9 Pa,

o"7)8590e3 kg/m3, A"58)97e-6 m2, r
X
"0)1930e-3 m, r

Y
"1)1938e-3 m,

C"9)14 N m2/rad,



Figure 5. Non-dimensional fundamental frequency of a uniform Timoshenko beam versus spring constants for
various mass ratios (r/¸"0)1): (a) K

rx1
¸3/EI"K

rx2
¸3/EI"0; (b) K

tx1
¸/EI"K

tx2
¸/EI"106; (c) K

rx1
¸3/EI"

K
tx1

¸/EI"106.
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The "rst "ve natural frequencies of both coupled and uncoupled (r
X
"r

Y
"0) vibrations

obtained by the MDQM are tabulated in Table 4 together with the numerical and
experimental results of Rao and Carnegie [27].

As can be observed from Table 4, the coupling e!ect is not signi"cant in the "rst three
>> bending modes, because the value of r

X
is very small. The frequency of the

"rst XX bending dominant coupled mode has reduced considerably from the value of the
uncoupled mode, because this mode is a!ected by r

Y
that is much larger than r

X
.

On the other hand, the frequency of the "rst torsion dominant mode has increased from
the value of the uncoupled mode. Therefore, the e!ect of asymmetry is such that
the natural frequencies of bending vibration decrease and natural frequencies of the
torsional vibration increase.

Figure 7 shows the natural frequencies for a blade attached to a hub of radius 0)5 m
with a stagger angle u"303. The geometric properties of the blade are from
Sabuncu and Thomas [28]. The natural frequencies of vibration are obtained by
the MDQM for the blade with or without a shroud, under di!erent rotating speed X of the



Figure 6. Non-dimensional fundamental frequency of a uniform Timoshenko beam versus spring constants for
various moment-of-inertia ratios (r/¸"0)1, m

s
/M

b
"1)0): (a) K

rx1
¸3/EI"K

rx2
¸3/EI"0; (b) K

tx1
¸/EI"

K
tx2

¸/EI"106; (c) K
rx1

¸3/EI"K
tx1

¸/EI"106.

TABLE 4

Natural frequencies of a cantilever blade with coupled bending-bending-torsion vibration

Present result (Hz) Numerical results (Hz) [27] Experimental
Main mode results (Hz)

Mode shape Uncoupled Coupled Uncoupled Coupled [27]

1 >> bending 96)76 96)73 96)9 96)9 97)0
2 >> bending 605)5 605)3 607)3 607)3 610)0
3 XX bending 848)4 810)1 868)4 845)8 790)0
4 Torsion 1045)6 1094)0 1048)23 1074)8 1102)0
5 >> bending 1691)4 1690)8 1701)7 1701)6 1693)0
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hub. It is expected that when a shroud is added to the blade, the "xed}free condition
becomes "xed}hinged or "xed}"xed condition. Consequently, the natural frequencies
increase as shown in Figure 7.



Figure 7. Campbell diagram for an asymmetric blade (a) without or (b) with a shroud.
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5. CONCLUSION

The MDQM proposed is applied to dynamic analysis of turbomachinery blades with
general end restraints. Contrary to the original DQM, the present approach allows for any
combinations of end restraining conditions of blades. Excellent agreements are observed
from the comparisons of MDQM results to exact solutions and to those available in the
published literature. E!ects of the spring coe$cients, slenderness, taper and mass ratios on
the natural frequency of the blade are examined. Campbell diagrams of an asymmetric
blade with or without a shroud are constructed. It has been demonstrated that the MDQM
is an accurate and e$cient numerical approach for vibration analyses of turbomachinery
blades with general end restraints.
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APPENDIX A

The elements of [K
ij
] in equation (24) are given as

K
11
"iG=

ki
B(Fx)
ii

A
ii
=

ij
#oX2[=

ki
B(Fx)
ii

R
ii
=

ij
#sin2 uA

jj
]#=

kj
S
ujj

,

K
12
"!oX2 sin u cos u A

jj
, K

13
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kj
B(Fx)
jj

A
jj
,

K
15
"oX2[=

kj
B(Fx)
jj

r@
yjj

R
jj
#=

ki
B(Fx)

ii
R

ii
r
yii
=

ij
#sin2 u A

jj
r
yjj
!sin u cosu A

jj
r
xjj

],

K
21
"!oX2 sin u cos u A

jj
,

K
22
"iG=

ki
B(Fy)
ii

A
ii
=

ij
#oX2[=

ki
B(Fy)

ii
R

ii
=

ij
#cos2 u A

jj
]#=

kj
S
vjj

,
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K
24
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kj
B(Fy)
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A
jj
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K
25
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R
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where =
ij

denotes the weighting matrix and B(f)
ii

is the modi"ed matrix; A
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I
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is a diagonal matrix given as
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The elements of [M
ij
] in equation (24) are given as
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APPENDIX B: NOMENCLATURE

A cross-sectional area of the blade
C torsional sti!ness
E Young's modulus of the blade material
G shear modulus of the blade material
I
cg

polar mass moment of inertia about center of gravity
I
dx

, I
dy

mass moment of inertia for shroud about x}y axes
I
XX

, I
YY

principal second moments of area of cross-section
I
xx

, I
xy

, I
yy

second moments of area of cross-section about x}y axes
Ih polar moment of inertia for shroud
K

tx
, K

ty
transverse springs in x- and y-axis

K
rx
, K

ry
, Kh rotational springs in x-, y- and z-axis

¸ length of the blade
M

b
total mass of the beam

m
s

mass of shroud
N no. of sampling points
R radius of the rotating disk
r radius of a circular cross-section of the beam
r
1
, r

2
radius of root and tip cross-section of a tapered beam respectively

r
X
, r

Y
distances between the center of #exure and centroid in X- and >-axis

r
x
, r

y
distances between the center of #exure and centroid in x- and y- axis

u, v displacements of center of #exure in x and y directions
u
1
, v

1
displacements of centroid in x and y directions

z distance measured from root
a, a@ pre-twisted angles at the tip and at the section of distance z from root
i shear correction factor ("0)833)
h torsional angle
o density per unit volume of the blade material
u stagger angle
/
x
, /

y
shear angles in x and y directions

u natural frequency
X rotating speed of the disk
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